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The reaction of 7,7a,8,9,10,12-hexahydrobenzo[h]pyrrolo [1,2-blisoquinoline-7,10-dione 2 with sodium
azide in sulfuric acid afforded the unexpected cyano derivative 5. The proposed structure for § is support-

ed by 13C nmr, 'H nmr and HMBC spectra.
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A common way to promote carbon-to-nitrogen
rearrangement reactions {1] is to place a strong electron-
withdrawing group on a nitrogen atom. The use of organic
azides tn organic synthesis lead to the formation of the
aminodiazonium ion as in the Steiglitz rearrangement [2]
or the iminodiazonium ion, as an intermediate in the
Schmidt reaction [3]. This last rearrangement is well doc-
umented and some variations such as the intermolecular
and intramolecular reactions of alkyl azides with ketones
have been reported [4]. The formation of nitriles [5]
accompanied with the formation of lactams has been
reported in the Schmidt reaction of ketones.

While investigating the Schmidt rearrangement of
1,2,3,5,10,10a-hexahydropyrrolo[1,2-b]isoquinoline-3,10-
dione (compound 1) [6], we were intrigued by the behav-
iour ol compound 2, where a naphthyl group replaced the
phenyl group of compound 1.

The Schmidt rearrangement was carried out on com-
pound 2 under the same conditions (concentrated sulfuric
acid/sodium azide/0°) as for compound 1. We did not
obtain the lactams 3 or 4 but the unexpected cyano deriva-
tive 5 as the major product of the reaction.

A postulated mechanism is outlined in Scheme 2. Addi-
tion of the hydrazoic acid afforded the iminodiazonium
intermediate [7] 6 after loss of water. Then, the departure
of nitrogen gave the nitrenium compound 7. Bond break-
ing gencraled the nitrile group and the unstable carbocation
8 which immediately reacted with the more electron-rich
ring of the naphthyl moiety affording the tetracyclic com-
pound 5 with a nitrile group on the naphthyl moiety. The
intermediate 6 could rearrange along two different alkyl-
migration pathways, but did not afford lactams 3 or 4.

The proposed structure for compound 5 is supported by
infrared and mass spectral data and by proton and carbon-
13 nmr data. The infrared spectrum shows absorptions at
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2240 and 1675 cm! for the nitrile group and the lactam,
respectively. The mass spectrum (chemical ionization
with ammonia) indicates a molecular peak at 249 (M*+1)
and the mass spectrum (EI) a peak at 247 (M*-1);
(247.0866 found, 247.0871 calculated for CycH{N,O in
hrms); the M*-1 peak is characteristic of a nitrile group
[8]. A detailed nmr study was undertaken,

The 13C nmr spectrum of compound S consists of six-
teen resolved signals. Beyond confirming the presence of
an amide function (8 = 172.8 ppm), the multiplicities of
the individual carbons, determined using the DEPT pulse
sequence [9], indicated three methylene (C7, Cg, Cyp),
six methine (Cy, C,, C5, C4’ Cs5 Cy;,) and seven non-pro-
tonated resonances (Cs,, Cg, Cga, Co, C11p, Cr1e0 CN).
Moreover the two signals at about 105 and 117 ppm are
indicative of an aromatic carbon bearing a nitrile group
[10].

The 400 MHz 'H nmr spectrum showed five aromatic
and seven aliphatic protons; they constitute AMKXY,
AMX and two AM spin systems which are analyzed as
first-order. At this point, compound 5 was identified as a
tetrahydro-7H-benzo[de]pyrrolo{2,1a]Jisoquinolin-9-one
based on the above spectral arguments, with an undeter-
mined position for the nitrile group.

The complete 1H and 13C chemical shifts assignment



142 1. Yves Mérour S. Piroélle, and R. Faure

Vol. 31

Scheme 2

|

A~

,H

of the compound S, and therefore the location of the
nitrile function, was done using inverse detection tech-
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niques [11]. The one-bond proton-carbon chemical shift
correlation was obtained from the heteronuclear multiple
quantum coherence (HMQC) sequence [12], while long-
range connectivities were obtained using a heteronuclear
multiple quantum bond connectivity (HMBC) experiment
[13]. From the HMBC contour plot, the H-7 resonance
showed a correlating peak with the quaternary carbon
located at 105 ppm. As a consequence, the CN group is B
to the methylene C-7. The HMBC contour plot of com-
pound 5 is reported in Figure 1 where the long range con-
nectivity is indicated for proton H-7.

The 'H and 13C chemical shifts and the proton-proton
coupling constants are listed in table 1 and 2, respectively.
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Figure 1
Table 1 Table 2
Proton and Carbon NMR Chemical Shifts of 5 in DMSO0-dg 1H-1H Coupling Constants (Hz) of 5
Position 3 13C (ppm) Multiplicity 3 H (ppm) Group 2 3 4
1 122.9 CH 7.57
2 129.3 CH 776 H-1, H-2 72
3 126.3 CH 7.96 H-1, H-3 1.3
3a 134.2 C - H-1, H-11a 1.3
4 127.9 CH 8.00 H-2, H-3 8.4
5 127.0 CcH 7.77 H-4, H-5 8.6
6 105.3 C = H-Ta, H-7B -17.5
6a 1372 C - H-100, H-108 -16.7
7 40.5 CH, 5.33 () and 4.57(a) H-10a, H-11a 9.6
9 172.8 C - H-10a, H-118 9.6
10 30.4 CH, 2.58 (B) and 2.36 (o) H-10a, H-11a 1.3
11 25.9 CH, 2.89 (B) and 2.05 () H-108, H-11« 3.0
lla 55.4 CH 5.11 H-10B, H-11B 9.6
11b 136.9 C - H-11a, H-11a 7.6
1lc 126.0 C - H-11B, H-11a 7.7
CN 117.3 C - H-11a, H-118 -12.4
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EXPERIMENTAL

Melting points were determined on a Kofler hot-stage appara-
tus and are uncorrected. The ir spectra were recorded on a
Perkin Elmer 297 spectrophotometer. The mass spectra were
obtained on a Nermag 10C apparatus and on a Varian VG ana-
lytical 70-S.

6-Cyano-9,10,11,11 a-tetrahydro-7H-benzo[de]pyrrolo[2,1-
alisoquinolin-9-one (5).

The ketone 2 [14] (3.76 g, 1.5 mmoles) was dissolved in con-
centrated sulfuric acid (24.3 ml) and chloroform (15 ml) and the
mixture cooled using an ice-bath. Sodium azide (2.14 g, 3.3
mumoles) was added portionwise and after the addition the mix-
ture was stirred for 3 hours at room temperature. After cooling
at 0°, ice (300 g) was added followed by dropwise addition of a
10% solution of sodium hydroxide until a pH 7 was reached.
After extraction with dichloromethane (3 x 100 ml), drying over
magnesium sulfate, and evaporating under reduced pressure, a
solid was obtained. This solid was purified by flash chromatog-
raphy on silica gel (230-400 mesh) using
dichloromethane:methanol (99:1, v/v) as eluent, yield 1.21 g,
32%, mp 170-172° (ethanol); ir (potassium bromide): 2240
(CN), 1675 (CO) em’ L.

Anal. Caled. for CjgH pN0: C, 77.40; H, 4.87; N, 11.28.
Found: C, 77.21; H, 4.98; N, 11.34.

NMR Spectroscopy.

All nmr experiments reported were performed using a Bruker
AMX-400 spectrometer in DMSO-dg solutions. Chemical shifts
were measured in parts per million relative to tetramethylsilane.
Resonance multiplicities for 13C were established via the acqui-
sition of DEPT spectra. The HMQC spectrum was obtained
using a pulse sequence (INVBTP in the operating Bruker soft-
ware) which includes the bilinear rotational decoupling (BIRD)
(15] pulse to invert the magnetization of the proton not coupled
to 13C. The HMQC spectrum was collected with 2K x 512 data
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points (2 x t1) and 8 scans per tl increment. Spectral widths of
2800 and 14000 Hz were employed in the F, (IH) and F; 13¢)
domains respectively. Data were processed using shifted sine
bell functions for weighting in both dimensions. The delay A;
was set to 3.4 ms, while Ay was empirically optimized to 400
ms. The HMBC spectrum was obtained using a standard pulse
sequence (INVALPLRND in the operating Bruker software).
The spectral widths were 2800 Hz (F;) and 18000 Hz (F;)
while the delays A; and A, were set to 3.4 and 90 ms, respec-
tively.
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