Unusual Schmidt Rearrangement of 7,7a,8,9,10,12-Hexahydro benzo[h]pyrrolo[1,2-b]-isoquinoline-7,10-dione Jean-Yves Mérour* and Simone Piroëlle

Laboratoire de Chimie Biorganique et Analytique, URA CNRS 499, BP 6759, UFR Sciences, Université d'Orléans, 45067, Orléans Cedex 02, France

Robert Faure

URA CNRS 1411, Faculté des Sciences St Jérôme, 13397 Marseille Cedex 13, France Received June 15, 1993

The reaction of 7,7a,8,9,10,12-hexahydrobenzo[h]pyrrolo [1,2-b]isoquinoline-7,10-dione 2 with sodium azide in sulfuric acid afforded the unexpected cyano derivative 5. The proposed structure for 5 is supported by ¹³C nmr, ¹H nmr and HMBC spectra.

J. Heterocyclic Chem., 31, 141 (1994).

A common way to promote carbon-to-nitrogen rearrangement reactions [1] is to place a strong electron-withdrawing group on a nitrogen atom. The use of organic azides in organic synthesis lead to the formation of the aminodiazonium ion as in the Steiglitz rearrangement [2] or the iminodiazonium ion, as an intermediate in the Schmidt reaction [3]. This last rearrangement is well documented and some variations such as the intermolecular and intramolecular reactions of alkyl azides with ketones have been reported [4]. The formation of nitriles [5] accompanied with the formation of lactams has been reported in the Schmidt reaction of ketones.

While investigating the Schmidt rearrangement of 1,2,3,5,10,10a-hexahydropyrrolo[1,2-b]isoquinoline-3,10-dione (compound 1) [6], we were intrigued by the behaviour of compound 2, where a naphthyl group replaced the phenyl group of compound 1.

The Schmidt rearrangement was carried out on compound 2 under the same conditions (concentrated sulfuric acid/sodium azide/ 0°) as for compound 1. We did not obtain the lactams 3 or 4 but the unexpected cyano derivative 5 as the major product of the reaction.

A postulated mechanism is outlined in Scheme 2. Addition of the hydrazoic acid afforded the iminodiazonium intermediate [7] 6 after loss of water. Then, the departure of nitrogen gave the nitrenium compound 7. Bond breaking generated the nitrile group and the unstable carbocation 8 which immediately reacted with the more electron-rich ring of the naphthyl moiety affording the tetracyclic compound 5 with a nitrile group on the naphthyl moiety. The intermediate 6 could rearrange along two different alkylmigration pathways, but did not afford lactams 3 or 4.

The proposed structure for compound 5 is supported by infrared and mass spectral data and by proton and carbon-13 nmr data. The infrared spectrum shows absorptions at

2240 and 1675 cm⁻¹ for the nitrile group and the lactam, respectively. The mass spectrum (chemical ionization with ammonia) indicates a molecular peak at 249 (M⁺+1) and the mass spectrum (EI) a peak at 247 (M⁺-1); (247.0866 found, 247.0871 calculated for $C_{16}H_{11}N_2O$ in hrms); the M⁺-1 peak is characteristic of a nitrile group [8]. A detailed nmr study was undertaken.

The 13 C nmr spectrum of compound 5 consists of sixteen resolved signals. Beyond confirming the presence of an amide function ($\delta = 172.8$ ppm), the multiplicities of the individual carbons, determined using the DEPT pulse sequence [9], indicated three methylene (C_7 , C_{10} , C_{11}), six methine (C_1 , C_2 , C_3 , C_4 , C_5 C_{11a}) and seven non-protonated resonances (C_{3a} , C_6 , C_{6a} , C_9 , C_{11b} , C_{11c} , C_{11c}). Moreover the two signals at about 105 and 117 ppm are indicative of an aromatic carbon bearing a nitrile group [10].

The 400 MHz ¹H nmr spectrum showed five aromatic and seven aliphatic protons; they constitute AMKXY, AMX and two AM spin systems which are analyzed as first-order. At this point, compound 5 was identified as a tetrahydro-7*H*-benzo[*de*]pyrrolo[2,1*a*]isoquinolin-9-one based on the above spectral arguments, with an undetermined position for the nitrile group.

The complete ¹H and ¹³C chemical shifts assignment

Scheme 2

of the compound 5, and therefore the location of the nitrile function, was done using inverse detection tech-

Scheme 3

niques [11]. The one-bond proton-carbon chemical shift correlation was obtained from the heteronuclear multiple quantum coherence (HMQC) sequence [12], while long-range connectivities were obtained using a heteronuclear multiple quantum bond connectivity (HMBC) experiment [13]. From the HMBC contour plot, the H-7 resonance showed a correlating peak with the quaternary carbon located at 105 ppm. As a consequence, the CN group is β to the methylene C-7. The HMBC contour plot of compound 5 is reported in Figure 1 where the long range connectivity is indicated for proton H-7.

The ¹H and ¹³C chemical shifts and the proton-proton coupling constants are listed in table 1 and 2, respectively.

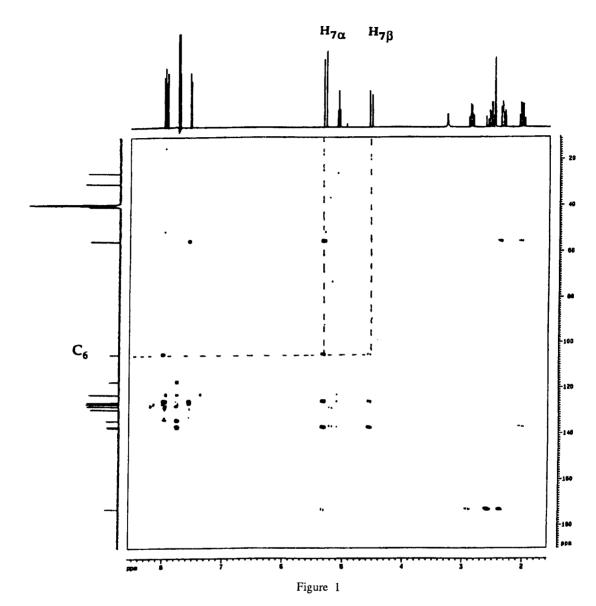


Table 1
Proton and Carbon NMR Chemical Shifts of 5 in DMSO-d₆

Table 2

¹H-¹H Coupling Constants (Hz) of 5

Position	δ ¹³ C (ppm)	Multiplicity	V		or or ordering constants (112) or 5		
			δ ¹ H (ppm)	Group	$2_{ m J}$	3 _J	4 ₁
1	122.9	CH	7.57			·	•
2	129.3	CH	7.76	H-1, H-2		7.2	
3	126.3	CH	7.96	H-1, H-3			1.3
3a	134.2	C	_	H-l, H-11a			1.3
4	127.9	CH	8.00	H-2, H-3		8.4	
5	127.0	CH	7.77	H-4, H-5		8.6	
6	105.3	С	~	Η-7α, Η-7β	-17.5		
6a	137.2	С	_	Η-10α, Η-10β	-16.7		
7	40.5	CH ₂	5.33 (β) and 4.57(α)	Η-10α, Η-11α		9.6	
9	172.8	C ~	_	Η-10α, Η-11β		9.6	
10	30.4	CH ₂	$2.58 (\beta)$ and $2.36 (\alpha)$	H-10α, H-11a			1.3
11	25.9	CH_2	$2.89 (\beta)$ and $2.05 (\alpha)$	Η-10β, Η-11α		3.0	
11a	55.4	CH	5.11	Η-10β, Η-11β		9.6	
11b	136.9	C	_	H-11α, H-11a		7.6	
11c	126.0	C	_	H-11β, H-11a		7.7	
CN	117.3	C	-	Η-11α, Η-11β	-12.4		

EXPERIMENTAL

Melting points were determined on a Kofler hot-stage apparatus and are uncorrected. The ir spectra were recorded on a Perkin Elmer 297 spectrophotometer. The mass spectra were obtained on a Nermag 10C apparatus and on a Varian VG analytical 70-S.

6-Cyano-9,10,11,11a-tetrahydro-7*H*-benzo[*de*]pyrrolo[2,1-*a*]isoquinolin-9-one (5).

The ketone 2 [14] (3.76 g, 1.5 mmoles) was dissolved in concentrated sulfuric acid (24.3 ml) and chloroform (15 ml) and the mixture cooled using an ice-bath. Sodium azide (2.14 g, 3.3 mmoles) was added portionwise and after the addition the mixture was stirred for 3 hours at room temperature. After cooling at 0°, ice (300 g) was added followed by dropwise addition of a 10% solution of sodium hydroxide until a pH 7 was reached. After extraction with dichloromethane (3 x 100 ml), drying over magnesium sulfate, and evaporating under reduced pressure, a solid was obtained. This solid was purified by flash chromatog-(230-400 mesh) silica gel raphy o n dichloromethane:methanol (99:1, v/v) as eluent, yield 1.21 g, 32%, mp 170-172° (ethanol); ir (potassium bromide): 2240 (CN), 1675 (CO) cm⁻¹.

Anal. Calcd. for $C_{16}H_{12}N_2O$: C, 77.40; H, 4.87; N, 11.28. Found: C, 77.21; H, 4.98; N, 11.34.

NMR Spectroscopy.

All nmr experiments reported were performed using a Bruker AMX-400 spectrometer in DMSO-d₆ solutions. Chemical shifts were measured in parts per million relative to tetramethylsilane. Resonance multiplicities for ¹³C were established *via* the acquisition of DEPT spectra. The HMQC spectrum was obtained using a pulse sequence (INVBTP in the operating Bruker software) which includes the bilinear rotational decoupling (BIRD) [15] pulse to invert the magnetization of the proton not coupled to ¹³C. The HMQC spectrum was collected with 2K x 512 data

points (t2 x t1) and 8 scans per t1 increment. Spectral widths of 2800 and 14000 Hz were employed in the F_2 (1H) and F_1 (^{13}C) domains respectively. Data were processed using shifted sine bell functions for weighting in both dimensions. The delay Δ_1 was set to 3.4 ms, while Δ_2 was empirically optimized to 400 ms. The HMBC spectrum was obtained using a standard pulse sequence (INV4LPLRND in the operating Bruker software). The spectral widths were 2800 Hz (F_2) and 18000 Hz (F_1) while the delays Δ_1 and Δ_2 were set to 3.4 and 90 ms, respectively.

REFERENCES AND NOTES

- [1] J. March, Advanced Organic Chemistry, John Wiley, New York, 4th Ed, 1992, pp 1051-1157.
- [2] W. H. Pearson and J. M. Schkeryantz, Tetrahedron Letters, 33, 529 (1992).
- [3] E. P. Kyba in Azides and Nitrenes: Reactivity and Utility, E. F. V. Scriven, ed, Academic Press, New York, 1984, pp 2-34.
- [4] J. Aube, G. L. Milligan and C. J. Mossman, J. Org. Chem., 57, 1635 (1992).
 - [5] G. Di Maio and V. Permutti, Tetrahedron, 22, 2059 (1966).
- [6] J. Y Mérour, S. Piroëlle, F. Cossais and D. Mazéas, J. Heterocyclic Chem. (submitted for publication).
 - [7] G. M. Shutske, J. Heterocyclic Chem., 27, 1617 (1990).
- [8] H. Budzikiewicz, C. Djerassi and D. H. Williams, Mass Spectrometry of Organic Compounds, Holden-Day, London, 1967, pp 407-418.
- [9] D. M. Doddrell, D. T. Pegg and M. R. Bendall, J. Magn. Reson., 48, 323 (1982).
- [10] H. O. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy, John Wiley, New-York, 1988.
 - [11] G. E. Martin and R. C. Crouck, J. Nat. Prod., 54, 1 (1991).
 - [12] A. Bax and S. Subramian, J. Magn. Reson., 67, 565 (1986).
- [13] A. Bax and M. F. Summers, J. Am. Chem. Soc., 108, 2093 (1986).
- [14] B. Rigo and N. Kolocouris, J. Heterocyclic Chem., 20, 893 (1983).
- [15] J. R. Carbow, D. P. Weitekamp and A. Pines, Chem. Phys. Letters, 93, 504 (1982).